Grade 11/12 Math Circles
 March 20, 2024
 Primality Testing and Integer Factorization - Problem Set

1. Determine whether the following statements are true.

- $16 \equiv 51(\bmod 5)$
- $21 \equiv 0(\bmod 7)$
- $4 \equiv 12(\bmod 16)$
- $-4 \equiv 12(\bmod 16)$

Solution:

- $16-51=-35$, which is divisible by 5 , so $16 \equiv 51(\bmod 5)$.
- $21-0=21$, which is divisible by 7 , so $21 \equiv 0(\bmod 7)$.
- $4-12=-8$, which is not divisible by 16 , so $4 \not \equiv 12(\bmod 16)$.
- $-4-12=-16$, which is divisible by 16 , so $-4 \equiv 12(\bmod 16)$.

2. Determine whether the following equalities are true:

- $[-4]=[16](\bmod 5)$
- $[2]=[14](\bmod 7)$.

Solution:

- $-4 \equiv 16(\bmod 5)$, so $[-4]=[16](\bmod 5)$.
- $2 \not \equiv 14(\bmod 7)$, so $[2] \neq[14](\bmod 7)$.

3. Calculate $7^{200} \% 48$.

Solution: Notice that $7^{2} \equiv 49 \equiv 1(\bmod 48)$, so $7^{200} \equiv 49^{100} \equiv 1^{100} \equiv 1(\bmod 48)$. The remainder is 1 .
4. Calculate $11^{301} \% 1332$.

Solution: Notice that $11^{3}=1331$. Thus $11^{301} \equiv 11 \times 1331^{100} \equiv 11 \times(-1)^{100} \equiv 11$ $(\bmod 1332)$. The remainder is 11.
5. Calculate $3^{k} \% 10$, for $0 \leq k \leq 12$. What do you notice?

Solution: Bashing it out, we get the sequence $1,3,9,7,1,3,9,7,1,3,9,7,1$. It is periodic with period 4.
6. Show that if $m \geq 1$ has any odd prime factor, that $2^{m}+1$ is composite.

Solution: Suppose $m=p k$, where p is an odd prime. Then $2^{m}+1 \equiv 2^{p k}+1 \equiv\left(2^{k}\right)^{p}+1 \equiv$ $(-1)^{p}+1 \equiv-1+1 \equiv 0\left(\bmod 2^{k}+1\right)$. Therefore $2^{k}+1$ divides $2^{m}+1$. Since $m \geq 1$, $k \geq 1$, so $3<2^{k}+1<2^{m}+1$, showing that $2^{k}+1$ is a proper divisor of $2^{m}+1$ and that $2^{m}+1$ is composite.
7. Show that if $m \geq 1$ is composite, then $2^{m}-1$ is composite.

Solution: Suppose $m=j k$, where both $j, k \geq 2$. Then $2^{m}-1 \equiv 2^{j k}-1 \equiv\left(2^{j}\right)^{k}-1 \equiv$ $1^{k}-1 \equiv 0\left(\bmod 2^{j}-1\right)$. Therefore $2^{j}-1$ divides $2^{m}-1$. Since $j, k \geq 2,3<2^{j}-1<2^{m}-1$, showing that $2^{j}-1$ is a proper divisor of $2^{m}-1$ and that $2^{m}-1$ is composite.
8. Verify that 561 is a Carmichael number.

Solution: By trial factoring (remember last time!), we obtain $561=3 \times 11 \times 17$. Thus it is squarefree, and furthermore $3-1=2,11-1=10$, and $17-1=16$ all divide $561-1=560$, so 561 is Carmichael.
9. Find the four roots of the polynomial $x^{4}-1 \bmod 5$.

Solution: By testing out the five congruence classes, we find that [1], [2], [3], [4] are all roots of $x^{4}-1 \bmod 5$ but that $[0]$ is not.
10. Find a modulus m such that $x^{2}+1$ has two roots.

Solution: The smallest such m is 5, and the roots are [2] and [3]. You might have found this by noticing the factorization $x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)$ from the previous example.
11. How many bases must we choose to theoretically have a 99% chance that m is prime?

Solution: We need to find a k such that $(1 / 4)^{k}<1 \%=1 / 100$. The least such k is 4 (we have $(1 / 4)^{3}=1 / 64$ and $\left.(1 / 4)^{4}=1 / 256\right)$.

